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1 Introduction

This brief overview details solving wave-equations,specifically the Plasmon Wave
Equation, with a Finite Element Method through the Python package FEn-
iCS. The final result is a intuitive API for simulating Plasmons along with an
interactive Bokeh Application for simulating Plasmons to allow experimental
measurements to be compared to these theoretical predictions.

2 Time Independent Schrödinger Equation

h̄2

2m
∇2ψ(~x, t) + V (~x)ψ(~x, t) = ih̄

∂ψ(~x, t)

∂t
(1)

For the time independent Schrödinger equation this transforms into

h̄2

2m
∇2ψ(~x) + V (~x)ψ(~x) = Eψ(~x) (2)

This is an eigenvalue equation where the left hand side is a Hamiltonian
operator acting on the wave functions ψn(x) and eigenvalues En.

For the harmonic oscillator problem we have

U(~x) =
1

2
k~x2

Through some additional simplifications (specifically scaling the x term) we
can achieve the following equation.

∇2ψ(~x) + (ε− ~x2)ψ(~x) = 0 (3)

In order to translate this into Fenics to be solved as an eigenvalue problem,
we need to obtain the weak variational form. Going forward we will be solving
this problem in 1-D.
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2.0.1 1-D Solution

∂2

u
∂x2 + (k − x2)u = 0∫

Ω

∂2

u
∂x2 + (k − x2)udx = 0

With integration by parts, we can show that;

∫
Ω

∂2u

∂x2
vdx =

∫
∂Ω

(
∂u

∂x
· n)vds−

∫
Ω

∂u

∂x

∂v

∂x
dx

We have the boundary terms defined to go to zero.∫
∂Ω

∂u

∂x
vds = 0

The result is this following equation.

∫
Ω

∂2u

∂x2
vdx = −

∫
Ω

∂u

∂x

∂v

∂x
dx

Plugging this into our main equation yields:∫
Ω

∂u

∂x

∂v

∂x
+ x2udx =

∫
Ω

kuvdx (4)

2.1 Helmholtz Equation

The Helmholtz equation is as follows:

∇2u+ k2u = 0

Then casting to weak form to solve the variational problem:

∫
Ω

(∇2u)v +

∫
Ω

k2uv = 0

∫
Ω

∇u∇v +

∫
Ω

k2uv = 0

We can then solve this variational problem with the SLEPcEigensolver since
the Helmholtz equation is really eigenvalue/vector problem. These are the the-
oretical solutions obtained.
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Figure 1: Theoretical solutions to the Helmholtz equations with associated
eigenvalues.

And here are the solutions that we extracted:

Figure 2: Calculated solutions to the Helmholtz equations with associated eigen-
values. We see there is a slightly different calculated solution for the eigenvalue
equal to 99.696.

2.2 Modeling Plasmons

Our plasmon wavefunction looks like one of the following equations [1]:
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Φind(r, θ) =
κ

2π
V ∗ ∇ · [ 1

qp(r, θ)
∇Φ(r, θ)] (5)

Φext(r, θ) = Φ(r, θ) +
iσ

ω
∇2Φ(r, θ) (6)

Where we have κ, V as the coulomb kernel, σ, ω, qp.
In this case we can have complex values for σ and for our solution Φ. There-

fore we need to rephrase the problem into a system of coupled differential equa-
tions.

If we consider equation 4 from [1] qp(r, θ) = iκω
2πσ . Since we have qp(r, θ) =

1
λ + i 1

L . We can calculate σ1 and σ2 from σ = σ1 + iσ2.

σ1 =
1
L

( 1
λ2

+ 1
L2 )

, σ2 =
1
λ

( 1
λ2

+ 1
L2 )

, ω = 2π
κV

These establish the relationship between the physical values and the the
coefficients σ1, σ2, and ω.

Now with σ = σ1 + iσ2 and Φ = u1 + iu2 we can plug into equation (6) with
Φext(r, θ) = 0.

ω(u1 + iu2) = (iσ1 − σ2)∇2(u1 + iu2) (7)

Through a couple of simple algebraic manipulations we get the following
coupled differential equations.

(σ2
1 + σ2

2)∇2u1 = ω(σ1u2 − σ2u1) (8)

(σ2
1 + σ2

2)∇2u2 = −ω(σ1u1 + σ2u2) (9)

Now we can phrase the two coupled equations in weak form.

∫
Ω

(σ2
1 + σ2

2)∇u1 · ∇q dx+ ω

∫
Ω

(σ1u2 − σ2u1)q dx = 0 ∀q ∈ V (10)

∫
Ω

(σ2
1 + σ2

2)∇u2 · ∇v dx− ω
∫

Ω

(σ1u1 + σ2u2)v dx = 0 ∀v ∈ V (11)

3 Simulation Results

We can now specify parameter values for λ and L while keeping ω = 2π. We
find that larger the value for L, the smaller the overall damping.
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Figure 3: Here L = 10. Real solutions with the specified parameters are plotted.
There are two circular sources with Dirichlet boundary conditions in the middle
of the sample.
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Figure 4: Here L = 10. Imaginary solutions with the specified parameters are
plotted. There are two circular sources with Dirichlet boundary conditions in
the middle of the sample.
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Figure 5: Here L = 1000. Real solutions with the specified parameters are
plotted. There are two circular sources with Dirichlet boundary conditions in
the middle of the sample.
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Figure 6: Here L = 1000. Imaginary solutions with the specified parameters are
plotted. There are two circular sources with Dirichlet boundary conditions in
the middle of the sample.

3.1 Sample Creation Program

So far

#Preparing Sample

sample = RectangularSample(50,100)

sample.placeCircularReflector(10,40,5.0)

sample.placeCircularReflector(15,40,5.0)

sample.placeCircularReflector(20,40,5.0)
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sample.placeCircularReflector(25,40,5.0)

sample.placeCircularReflector(30,40,5.0)

sample.placeCircularReflector(35,40,5.0)

sample.placeCircularReflector(40,40,5.0)

sample.placeCircularSource(30.0,25,2.0)

sample.placeCircularSource(20.0,25,2.0)

#initializing parameters

sigma = S()

omega = O()

#arg0 = \lambda, arg1 = L

sigma.set_sigma_values(1,10)

#arg0 = \kappa, arg1 = V

omega.set_omega_values(1,1)

sample.run(omega,sigma,density = 200)

With this code, we create an array of reflectors and two circular sources.
The mesh and solutions are visualized below:

Figure 7: Here λ = 1, L = 10.
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Figure 8: Here λ = 1, L = 100.
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Figure 9: Here λ = 1, L = 1000.

4 Additional Features

We have also developed a Python API for running these simulations which is
then interfaced through a Bokeh front end.
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Figure 10: Example of the interactive Bokeh application for running plasmon
simulations. The red regions represent rectangular reflectors and the blue re-
gions represent rectangular sources.

5 Conclusion

We were able to solve the plasmon wave equation in FEniCS and build an API to
allow for the arbitrary creation of different samples with arbitrary placements
of sources and reflectors. This API is then accessed by a Bokeh front end
that provides an interactive way to simulate plasmons. This can be used to
theoretically verify experimental results and further work will be done in making
it more accurate by including other effects.
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