
Methods for Solving Fokker Planck

William Zheng

May 2019

1 Abstract

Stochastic differential equations (SDE)s are powerful and have numerous applications. SDEs like Black Scholes
dictate how to price options while SDEs like Fokker-Planck are used from finance, to accelerator physics, to even
neuroscience. In this project, we study Finite Difference Schemes to solve Fokker-Planck for (2+1) variables.
We were able to implement and compare 5 stable finite difference schemes, both explicit and implicit, in terms
of convergence of error in time and space on a test problem of a dampened harmonic oscillator. We determined
the best algorithm in terms of accuracy and convergence and suggest its use as well as attempt to understand
why it performed so well.

2 Derivation of Fokker-Planck

The Fokker-Planck Equation is the equation that governs the time evolution of the probability density of
Stochastic Processes. It is a second order differential equation and is exact when the noise acting on the
Brownian Particle is Gaussian White Noise [1]. It is also known as the Kolmogorov forward equation and can
be derived from the master equation through Kramers–Moyal expansion[2].

Here we will derive the Fokker-Planck Equations adapted from [1]. First we need to derive the equations
of motion for the probability density %(x, t, v) for finding the Brownian Particle in the interval (x, x+ dx) and
(v, v + dv) at time t over the realization for some random force ξ(t). Then we average over this random force
in order to obtain an equation for:

P (x, v, t) = 〈%(x, v, t)〉 (1)

We will operate in the space of the coordinates x = (x, v) and say that the Brownian Particle is located in
the infinitesimal area (dxdv) with probability %(x, v, t)dxdv. Since the Brownian Particle needs to be present,
if we integrate over the whole phase space we have:

∞∫
−∞

dx

∞∫
−∞

dv%(x, v, t) = 1 (2)

If we consider a finite volume V0 and converse the probability of the Brownian Particle (i.e. it cannot be
destroyed) then the probability contained in the volume V0 must be due to the flow of probability through the
surface S0 surrounding V0. ∫ ∫

V0

dxdv
∂

∂t
%(x, v, t) = −

∫
S0

%(x, v, t)ẋ · dS (3)

Applying Gauss’s Theorem to take the surface integral into a volume integral we have:∫ ∫
V0

dxdv
∂

∂t
%(x, v, t) = −

∫ ∫
V0

dxdv∇ · (ẋ%(x, v, t)) (4)

Since we have V0 as fixed and arbitrary we then can set the two integrands equal to each other to get the
continuity equation:

∂

∂t
%(x, v, t) = −∇ · (ẋ%(x, v, t)) = − ∂

∂x
(ẋ%(x, v, t))− ∂

∂v
(v̇%(x, v, t)) (5)

With this continuity equation we can continue to solve for the probability flow of a Brownian Particle. We
begin with the Langevin Equation governing the evolution of the particle. A particle moving through a potential
V(x) has the Langevin equations:

1



dx

dt
= v (6)

dv

dt
= − γ

m
v +

1

m
F (x) +

1

m
ξ(t) (7)

where the force is F (x) = −V ′(x). If we substitute these equations into the continuity equation we derived
(4), then we get the expression:

∂

∂t
%(x, v, t) = − ∂

∂x
(v%(x, v, t)) +

γ

m

∂

∂v
(v%(x, v, t)) (8)

− 1

m
F (x)

∂

∂v
(%(x, v, t))− 1

m
ξ(t)

∂

∂v
%(x, v, t) (9)

= −L0%(x, v, t)− L1(t)%(x, v, t) (10)

Where we have two differential operators L0 and L1 defined as:

L0 = v
∂

∂x
− γ

m
− γ

m
v
∂

∂v
+

1

m
F (x)

∂

∂v
(11)

L1 =
1

m
ξ(t)

∂

∂v
(12)

Since ξ(t) represents a stochastic variable, we need to introduce an observable probability density that
represents the average over this stochastic variable, P (x, v, t) = 〈ξ(t)〉ξ.

If we let:
%(t) = e−L0tσ(t) (13)

Then we have:
%(t) = −e−L0tLt(t)e

−L0tσ(x, v, t) = −V (t)σ(x, v, t) (14)

This has the solution

σ(t) = exp−
t∫

0

dt′V (t′)σ(0) (15)

Taking the average over the Gaussian Noise ξ(t) or the rather the expected value, 〈σ(t)〉ξ is the characteristic

function of the random variable X(t) = i
t∫

0

dt1V (t1). X must be a Gaussian random variable with 〈X(t)〉ξ = 0

and the variance of:

〈X(t)2〉 =
1

2

t∫
0

dt1

t∫
0

dt2 〈V (t1)V (t2)〉 (16)

Since the characteristic function of a Gaussian r.v. X(t) is known: exp (iX(t)) = exp (iµX − 〈X(t)2〉 /2) we
have:

〈σ(t)〉 = exp (
1

2

∫ t

0

dt1

∫ t

0

dt2 〈V (t1)V (t2)〉)σ(0) (17)

We can reduce this, since it is just a special case of a cumulant expansion, to:

1

2

∫ t

0

dt1

∫ t

0

dt2 〈V (t1)V (t2)〉 =
g

m2

∫ t

0

dt1e
L0t1

∂2

∂v2
e−L0t1 (18)

Therefore we have:

∂

∂t
〈σ(x, v, t)〉ξ =

g

2m2
eL0t1

∂2

∂v2
〈%(x, v, t)〉ξ (19)

Therefore for 〈%(x, v, t)〉ξ we have:

∂

∂t
〈%(x, v, t)〉ξ = −L0 〈%(x, v, t)〉ξ +

g

2m2

∂2

∂v2
〈%(x, v, t)〉ξ (20)

so for the probability distribution evolution we have the following equation:

2



∂

∂t
P (x, v, t) = −v ∂

∂x
P (x, v, t)− ∂

∂v

[(
γ

m
v − 1

m
F (x)

)
P (x, v, t)

]
+

g

2m2

∂2

∂v2
P (x, v, t) (21)

A very cool idea that originates from this physics-like derivation was the idea of a continuity equation and
also a definition for probability current! From the Fokker-Planck Equation as a continuity equation:

∂

∂t
P (x, v, t) = −∇ · j (22)

where ∇ = ex
∂
∂x + ev

∂
∂v and the probability current is then:

j = exvP − ev
[(

γ

m
v − 1

m
F (x)

)
P − g

2m2

∂

∂v
P

]
(23)

3 Applications and Numerical Methods

There are various techniques used to solve the Fokker-Planck Equation which include Monte Carlo Methods
[3] [4], Finite Element Method [5], Robust Finite Difference Methods which include the Fully Implicit Chang
Cooper Method [6], operator splitting [7], and the Central Finite Differences and Alternating Directions Implicit
Method [8]. Methods that have been recently introduced include Proximal Recursion [9].

Applications for solving the Fokker-Planck Equations include modelling single particle accelerator dynamics
[10][11], pricing an option, and to characterize the spiking statistics of neurons receiving noisy synaptic input
[12] with other applications in neuroscience.

For this project, we would like to numerically solve the Fokker-Planck Equation in (2+1) variables with our
primary inspiration coming from stochastic beam dynamics within accelerators. An important problem within
this field is particle motion under the influence of various noise sources. [13]. A stochastic differential equation
governs this motion and its solutions are Markovian Diffusion Processes which can be described by the Fokker
Planck Equation[10].

We would like to implement the method from [10], which is a fully implicit operator splitting method, and
also implement an operator splitting method which utilizes Backward Euler and Crank-Nicholson Schemes as
part of evaluating each operator [7]. We compare each method’s error at different time steps on a test problem of
a damped harmonic oscillator with strong diffusion and perform a convergence study. We perform an additional
von Neumann Analysis on the fully implicit operator splitting method.

4 Description of the Numerical Methods

Following the general equations of motion studied in [10], we study equations of the form:

d

ds
x1 = x2 (24)

d

ds
x2 = −a1(x1)− a2(x1, x2) + a3(x1)η1 + a4η2 (25)

We have η1, η2 as white noise Gaussian processes and a1(x1) can be an arbitrary nonlinear potential (field),
a2(x1, x2) can include van der Pol-like damping terms, a3(x1)η1 describes random parameters and a4η2 repre-
sents an additive noise term.

The corresponding (Ito) Fokker-Planck Equation for the probability density reads:

∂

∂s
p(x1, x2, s) = − ∂

∂x1
[x2 · p(x1, x2, s)] +

∂

∂x2
[(a1(x1) + a2(x1, x2)) · p(x1, x2, s)]

+
1

2

∂2

∂x2
2

[(a2
3(x1) + a2

4) · p(x1, x2, s)].

This now can be evaluated in a few different ways. In [10] the previous equation could be written in the
form of two fluxes, one in x1 and one in x2 such that:

∂p

∂s
=

∂A

∂x1
+
∂B

∂x2

This form implies that we should solve this with an operator splitting technique like the following. First we
need to implicitly evaluate the x2 derivative which takes on this form:

3



p
n+ 1

2
i,j

∆s
=
pni,j
∆s

+
F
n+ 1

2

i,j+ 1
2

− Fn+ 1
2

i,j− 1
2

∆x2
(26)

Where we have Fi,j+ 1
2

defined as the following:

Fi,j+ 1
2

= D
pi,j+1 − pi,j

∆x2
+ [a1(x1) + a2(x1, x2 + ∆x2)]

pi,j+1 + pi,j
2

(27)

Where we have D =
a2

3(x1)+a4
4

2 however, we view this term with caution as it may actually be incorrect.
In order to then implicitly evaluate the x1 derivative we perform the following:

pn+1
i,j − p

n+ 1
2

i,j

∆s
= −x2 ·

pn+1
i+1,j − p

n+1
i−1,j

2∆x1
(28)

This is therefore in total the method described in [10]. If we use the same equations of motion, phrased a
bit differently, we can split this into three operators [7]:

d

ds
x1 = x2 (29)

d

ds
x2 = −g(x1, x2, t) + f(t) (30)

Where we have f(t) as some random Gaussian Noise where we have:

〈f(t)〉 = 0 (31)

〈f(t1)f(t2)〉 =
W0

2
δ(t1 − t2) (32)

Then the Fokker-Planck Equation for this system is given by [14].

W0

4

∂2p

∂y2
− ∂

∂y2
g(y1, y2)p =

∂p

∂t
(33)

Therefore if we split this operator up into three parts we get:

∂p

∂t
= L1p+ L2p+ L3p (34)

with


pn+ 1

3 = U1(pn)

pn+ 2
3 = U2(pn+ 1

3 )

pn+1 = U3(pn+ 2
3 )

(35)

Then in these cases we can replace U1,U2,U3 with different finite difference schemes that will represent the
respective operators L1,L2,L3.

Now in this project, we will attempt to implement the implicit 2-operator splitting finite difference technique
from [10] and 3-operator splitting testing the accuracy of both explicit and implicit methods.

5 Implementation of the Numerical Methods

5.1 Implementation of fully implicit 2-operator splitting method

In order to implement the fully implicit 2-operator splitting method from [10] we try to rewrite the expression
for the derivative of x2 in terms of more manageable coefficients to easily see the tri-diagonal form:

This means we have a tri-diagonal expression for the first half step up into p. Since we define F as the
following:

Fi,j+ 1
2

= D
pi,j+1 − pi,j

∆x2
+ [a1(x1) + a2(x1, x2 + ∆x2)]

pi,j+1 + pi,j
2

(36)

At this point we also realize that C and D will be dependent on x1 and x2 therefore we have Di,j , Ci,j , Ei,j .
This will mean that our variables at (i,j) will correspond to evaluating Fi,j+ 1

2
. We rewrite F as the following:

Fi,j+ 1
2

= Di,j
pi,j+1 − pi,j

∆x2
+ Ci,j

pi,j+1 − pi,j
2

(37)

4



Where we define the following in order to make our calculations easier:

Ci,j =
[a1(x1) + a2(x1, x2 + ∆x2)]

2
(38)

Ei,j =
Di,j

∆x2
(39)

Rewriting Fi,j+ 1
2

now in terms of our new coefficients we have:

Fi,j+ 1
2

= Ei,j · (pi,j+1 − pi,j) + Ci,j · (pi,j+1 + pi,j) (40)

Fi,j+ 1
2

= (Ci,j + Ei,j) · (pi,j+1)− (Ei,j − Ci,j) · (pi,j) (41)

(42)

Therefore the terms for Fi,j− 1
2
.

Fi,j− 1
2

= (Ci,j−1 + Ei,j−1) · (pi,j)− (Ei,j−1 − Ci,j−1) · (pi,j−1) (43)

Back to our expression for the x2 derivative we need to calculate Fi,j+ 1
2
− Fi,j− 1

2
.

Fi,j+ 1
2
− Fi,j− 1

2
= (Ci,j +Ei,j) · pi,j+1 − [(Ei,j − Ci,j) · pi,j + (Ci,j−1 +Ei,j−1) · pi,j ] + (Ei,j−1 − Ci,j−1) · pi,j−1

Therefore combining the two for the implicit derivative in the x2 we get:

p
n+ 1

2
i,j − pni,j

∆s
=
F
n+ 1

2

i,j+ 1
2

− Fn+ 1
2

i,j− 1
2

∆x2

p
n+ 1

2
i,j

∆s
=
pni,j
∆s

+
F
n+ 1

2

i,j+ 1
2

− Fn+ 1
2

i,j− 1
2

∆x2

p
n+ 1

2
i,j

∆s
=
pni,j
∆s

+
(Ci,j + Ei,j) · p

n+ 1
2

i,j+1 − [(Ei,j − Ci,j) · p
n+ 1

2
i,j + (Ci,j−1 + Ei,j−1) · pn+ 1

2
i,j ] + (Ei,j−1 − Ci,j−1) · pn+ 1

2
i,j−1

∆x2

p
n+ 1

2
i,j = pni,j + ∆s(

(Ci,j + Ei,j) · p
n+ 1

2
i,j+1 − [(Ei,j − Ci,j) + (Ci,j−1 + Ei,j−1)] · pn+ 1

2
i,j + (Ei,j−1 − Ci,j−1) · pn+ 1

2
i,j−1

∆x2
)

Therefore in Tri-diagonal Form we get:

−pni,j = −pn+ 1
2

i,j +
∆s · (Ci,j + Ei,j) · p

n+ 1
2

i,j+1

∆x2
+
−∆s · [(Ei,j − Ci,j) + (Ci,j−1 + Ei,j−1)] · pn+ 1

2
i,j

∆x2
+

∆s · (Ei,j−1 − Ci,j−1) · pn+ 1
2

i,j−1

∆x2

This is under the assumption that Ei,j = Ei,j−1. We will also set Ci,j = Ci,j−1 This will prevent the method
from ”losing” probability and suffer constantly increasing/decreasing values. These variables are then used in
the code as part of this project.

5.2 Implementation of the 3-operator splitting method

To implement the 3-operator splitting method, we need to choose methods that can replace U1,U2,U3 with
different finite difference schemes that will represent the respective operators L1,L2,L3.

For implementation we use: 
L1 = Implicit Euler, Explicit Euler

L2 = Implicit Euler

L3 = Backward Euler, Crank-Nicolson

These methods were also implemented assuming zero boundary conditions.
We only use the explicit method for the L2 because we were not able to get it to reproduce the Implicit

Euler method on the L2. We also tried an explicit method for the L3 step, however, we were also unable
to reproduce the accuarcy that Backward Euler and Crank-Nicolson achieved. We attribute this possible to
boundary conditions we were unable to phrase properly.

5



6 Testing the Numerical Methods

6.1 Test Problem: Dampened Harmonic Oscillator

The first example that we will use is the damped harmonic oscillator with strong diffusion where a1(x1) = Kx1,
a2(x1, x2) = γx2, a3(x1) = 0, and a4 = σ. Where we set K = 1, γ = 2.1, σ = 0.8, a 81 by 81 grid,
∆x1 = ∆x2 = 0.1,∆s = π

1000 where we use the exact solution for the Harmonic Oscillator at s = 0.95. A note,
we set D = 0.8, with reference to [10] which is the same as W0 = 3.2 [7] and simulate out 800 time steps. (We
note that s and t both represent the same quantity time).

Figure 1: In this figure we show the PDF over the phase space (x1,x2) for the dampened harmonic oscillator.

We denote the methods as the following. The 2-operator implicit method is 2OI, the Implicit (L1), Implicit
(L2), Crank-Nicolson (L3) Scheme is IICN, the Implicit (L1), Implicit (L2), Backwards Euler (L3) Method is
IIBE, the Explicit (L1), Implicit (L2), Crank-Nicolson (L3) Method is denoted EICN, and the Explicit (L1),
Implicit (L2), Backwards Euler (L3) Method is EIBE. We do the follow comparisons of the error of these

methods after 800 time steps where we define error as ||e|| =
√

1
N (
∑

(ρnumi,j − ρexacti,j )) where N represents the

total amount of data points present.

Numerical Method Error at 800 time steps
IICN 0.000450273
IIBE 0.000468833
EICN 0.000256599
EIBE 0.000333529
2OI 0.007862812

Figure 2: In this figure we show the error of the method after simulating 800 time steps, we find that the best
performing algorithm is EICN and the worst performing algorithm is 2OI by an order of magnitude with respect
to the rest of the algorithms.

6.2 Error Convergence: Space

We now perform error convergence measurements all of our algorithms.

6



Figure 3: In this figure we show the convergence of error for the 2OI method is not even 1. It seems like this
algorithm does quite poorly.

Figure 4: In this figure we show the convergence of error for the IICN method is around 2 and appears to show
small signs that the error will stop improving as quickly as we decrease ∆x.

Figure 5: In this figure we show the convergence of error for the IIBE method is around 2 and appears to show
large signs that the error will stop improving quickly as we decrease ∆x.

7



Figure 6: In this figure we show the convergence of error for the EIBE method is around 2 and appears to show
large signs that the error will stop improving quickly as we decrease ∆x.

Figure 7: In this figure we show the convergence of error for the EICN method is around 2 and appears to show
small signs that the error will stop improving quickly as we decrease ∆x.

6.3 Error Convergence: Time

We also were able to test convergence with time and for the 2OI method, decreasing the step size seemed to
barely improve the error where it wasn’t converging with any appreciable order. However, we were able to
achieve first order convergence in error with all the three operator methods. This is what we expect since our
methods are limited by steps that are first order in time.

8



Figure 8: In this figure we show the convergence of error for the 2OI method is not even 1. It seems like this
algorithm does quite poorly.

Figure 9: In this figure we show the convergence of error for the IICN method with respect to time is order 1.

Figure 10: In this figure we show the convergence of error for the IIBE method with respect to time is order 1.

9



Figure 11: In this figure we show the convergence of error for the EIBE method with respect to time is order 1.

Figure 12: In this figure we show the convergence of error for the EICN method with respect to time is order 1.

7 Stability of the Numerical Methods

7.1 Stability of fully implicit 2-operator splitting method

Although it was mentioned in [6] that some implicit methods for solving the Fokker-Planck Equation were unsta-
ble, with guidance from [11] we were able to show that the 2OI (2-Operator Implicit Method) has unconditional
stability in both steps by Von-Neumann Analysis.

For the first step, x2 derivative, we have the following:

p
n+ 1

2
i,j

∆s
=
pni,j
∆s

+
F
n+ 1

2

i,j+ 1
2

− Fn+ 1
2

i,j− 1
2

∆x2

Fi,j+ 1
2

= D
pi,j+1 − pi,j

∆x2
+ [a1(x1) + a2(x1, x2 + ∆x2)]

pi,j+1 + pi,j
2

We will consider pni,j = g(ξ)neiξj∆x and we will approximate a ≈ [a1(x1) + a2(x1, x2 + ∆x2)] ≈ [a1(x1) +
a2(x1, x2 −∆x2)]

Fi,j+ 1
2

= D
pi,j+1 − pi,j

∆x2
+ a

pi,j+1 + pi,j
2

p
n+ 1

2
i,j

∆s
=
pni,j
∆s

+
D
p
n+ 1

2
i,j+1−p

n+ 1
2

i,j

∆x2
+ a

p
n+ 1

2
i,j+1+p

n+ 1
2

i,j

2 − [D
p
n+ 1

2
i,j −p

n+ 1
2

i,j−1

∆x2
+ a

p
n+ 1

2
i,j +p

n+ 1
2

i,j−1

2 ]

∆x2

10



1

∆s
=
g(ξ)−

1
2

∆s
+
D eξi∆x−1

∆x2
+ a e

ξi∆x+1
2 − [D 1−e−ξi∆x

∆x2
+ a 1+e−ξi∆x

2 ]

∆x2

1

∆s
=
g(ξ)−

1
2

∆s
+
D[ e

ξi∆x−1
∆x2

− 1−e−ξi∆x
∆x2

] + a[ e
ξi∆x+1

2 − 1+e−ξi∆x

2 ]

∆x2

1

∆s
=
g(ξ)−

1
2

∆s
+
D[ e

ξi∆x−2+e−ξi∆x

∆x2
] + a[ e

ξi∆x−e−ξi∆x
2 ]

∆x2

1

∆s
=
g(ξ)−

1
2

∆s
+
D[−2+2 cos(ξ∆x)

∆x2
] + a[ i sin(ξ∆x)

1 ]

∆x2

1

∆s
=
g(ξ)−

1
2

∆s
+
D[
−2+2−4 sin2( ξ∆x2 )

∆x2
] + a[i sin(ξ∆x)]

∆x2

1

∆s
=
g(ξ)−

1
2

∆s
+
−4D

∆x2
2

sin2(
ξ∆x

2
) +

1

∆x2
a[i sin(ξ∆x)]

1 = g(ξ)−
1
2 +
−4D∆s

∆x2
2

sin2(
ξ∆x

2
) +

∆s

∆x2
a[i sin(ξ∆x)]

1 +
4D∆s

∆x2
2

sin2(
ξ∆x

2
)− ∆s

∆x2
a[i sin(ξ∆x)] = g(ξ)−

1
2

Therefore if we consider a half step as a whole step we have:

g(ξ) =
1

1 + 4D∆s
∆x2

2
sin2( ξ∆x2 )− ∆s

∆x2
a[i sin(ξ∆x)]

For the second step, x1 derivative, we have:
Now we will consider pni,j = g(ξ)neiξj∆x

pn+1
i,j − p

n+ 1
2

i,j

∆s
= −x2 ·

pn+1
i+1,j − p

n+1
i−1,j

2∆x1

g(ξ)n+1eiξj∆x − g(ξ)n+ 1
2 eiξj∆x

∆s
= −x2 ·

g(ξ)n+1e(i)ξ(j+1)∆x − g(ξ)n+1e(i)ξ(j−1)∆x

2∆x

1− g(ξ)−
1
2

∆s
= −x2 ·

eξi∆x − e−ξi∆x

2∆x

Using eξj∆x = cos(ξj∆x) + i sin(ξj∆x) we get:

1− g(ξ)−
1
2

∆s
= −x2 ·

cos(ξ∆x) + i sin(ξ∆x)− (cos(ξ∆x)− i sin(ξ∆x))

2∆x

1− g(ξ)−
1
2

∆s
= −x2 ·

2i sin(ξ∆x)

2∆x

1− g(ξ)−
1
2 = −x2 ·

∆s

∆x
i sin(ξ∆x)

g(ξ)−
1
2 = 1 + x2 ·

∆s

∆x
i sin(ξ∆x)

If we consider the fraction half step as a full half step we will have:

g(ξ) =
1

1 + x2 · ∆s
∆x i sin(ξ∆x)

Therefore as claimed by [11] our expressions for g show that:

|g| ≤ 1 (44)

The claim is also that the scheme is second order accurate in ∆x, ∆v, and ∆t [11].

11



7.2 Stability of Forwards/Explicit Euler Method

We were able to show in class [15] that the Forward Euler method is Lax-Richtmeyer stable and has strong
stability which by the Lax Equivalence Theorem shows that the linear method is convergent since it is Lax-
Richtmyer Stable. This method is first order in time and second order in space since we use second order
centered difference in space for the discretization.

7.3 Stability of Backwards/Implicit Euler Method

Backwards Euler is known as an L-Stable method where the absolute Stability Regions for backwards Euler
consists of the entire left half plane. Therefore as a method it is very stable. This method is first order in time
and second order in space.

7.4 Stability of Crank Nicolson Method

For the Crank-Nicholson Method we know that the trapezoidal method is absolutely stable so we can choose
any ∆t [16]. We also know that these method is second order accurate in both time and space.

8 Discussion

8.1 Analysis

We find that after comparing the 2OI, IICN, IIBE, EICN, EIBE algorithms 2OI seems to be pretty poor in
our implementation in comparison to the rest in terms of accuracy level, being an order of magnitude off,
and in terms of convergence in space, where 2OI couldn’t achieve even first order convergence while the other
methods easily achieved second order convergence. This could be because we didn’t implement proper boundary
conditions as they were not specified in [10] since we are supposed to achieve second order convergence in space
and a high level of accuracy. However, we do show that all the methods are stable and that we are able to
achieve second order convergence and very good accuracy with respect to results achieved in [7] for the IICN,
IIBE, EICN, EIBE algorithms. If we were to suggest using some of these methods, we would suggest EICN,
since EICN had the lowest error at 800 time steps and 2nd order convergence in space with little sign of slowing
down. IICN also appeared to have 2nd order convergence in space with little sign of slowing down while the
other methods seemed to be slowing down as we increased ∆x as if they were going to stop second order
convergence with respect to space. We remark that since the two algorithms in question used Backwards Euler,
maybe that is the reason why. Future work can be done to elucidate this. We also notice that the algorithms
that used the explicit method for the L1 operator achieved some of the best accuracy scores.

8.2 Difficulties and Nuances

We found that [10] and [11] contain a fair share of discrepancies, but for a paper the same age as me, I don’t fault
them. If we had the full description of the algorithm, maybe we would be able to achieve better convergence.
Otherwise, our implementation took very long overall since it was so hard to decipher. [7] was much more
straight forward and helped me realize that a term on the Dampened Harmonic Oscillator Expression was the
diffusive term which corrected a major mistake in the 2OI algorithm. We also noticed that the operators L1,
L2, L3 could be performed in different orders in order to increase accuracy. The best combination of the orders
was L3, L1, L2 which decrease the error at the 800th time step by half in comparison to the normal order!

9 Conclusion

In this project, we were able study Finite Difference Schemes to solve Fokker-Planck for (2+1) variables. We
were able to implement and compare 5 stable finite difference schemes, both explicit and implicit, in terms of
convergence in space and accuracy on a test problem of a dampened harmonic oscillator. We found that the
EICN scheme is the most accurate in solving the test problem and displays the best convergence characteristics.
While we weren’t able to achieve the best 2OI convergence and accuracy values from [10], we were able to
implement it successfully and prove its stability. We were able to achieve first order convergence in time for
the majority of our methods except for the 2OI method. Overall, we were able to perform a comparison across
these 5 schemes for solving Fokker-Planck, determine the best scheme, and elucidate possible areas of future
study.

12



10 Appendix

The Jupyter Notebooks are arranged as follows:

1. Numerical Solution for Fokker Planck Equations in Accelerators: Description and Code of the 2OI

2. Fokker Planck Implementation: Implementation of the 2OI and Analysis

3. Fokker Planck Three Operators: Code for IICN, IIBE, EIBE, EICN

4. Testing Convergence Three Operators: Analysis for IICN, IIBE, EIBE, EICN

The module FokkerPlanck.py includes the implementation code for IICN, IIBE, EIBE, and EICN and
comments!

References

[1] Kap Chapter 7. “Brownian Motion : Fokker-Planck Equation”. In: ().

[2] Wikipedia. “Fokker–Planckequation”. In: ().

[3] J Varje. “Monte Carlo method and High Performance Computing for solving Fokker-Planck equation of
minority plasma particles”. In: (2015). doi: 10.1017/S0022377815000203. arXiv: arXiv:1510.06221v1.

[4] K Kikuchi, M Yoshida, T Maekawa, et al. “Metropolis Monte Carlo method as a numerical technique to
solve the Fokker-Planck equation”. In: 185.3 (1991), pp. 335–338.

[5] Pankaj Kumar and S. Narayanan. “Solution of Fokker-Planck equation by finite element and finite differ-
ence methods for nonlinear systems”. In: Sadhana 31.4 (Aug. 2006), pp. 445–461. issn: 0973-7677. doi:
10.1007/BF02716786. url: https://doi.org/10.1007/BF02716786.

[6] Brian T Park and Vahe Petrosian. “Fokker-Planck Equations of Stochastic Acceleration : A Study of
Numerical Methods”. In: (1995).

[7] F Schmidt and C Lamarque. “Computation of the solutions of the Fokker – Planck equation for one and
two DOF systems”. In: 14 (2009), pp. 529–542. doi: 10.1016/j.cnsns.2007.09.004.

[8] L Pichler, A Masud, and L A Bergman. “Numerical Solution of the Fokker – Planck Equation by Finite
Difference and Finite Element Methods — A Comparative Study”. In: (2013). doi: 10.1007/978-94-
007-5134-7.

[9] Kenneth F Caluya, Abhishek Halder, and O C Nov. “Proximal Recursion for Solving the Fokker-Planck
Equation”. In: arXiv 0.3 (2018). arXiv: arXiv:1809.10844v2.

[10] M P Zorzano, H Mais, D- Hamburg, et al. “NUMERICAL SOLUTION FOR FOKKER-PLANCK EQUA-
TIONS IN ACCELERATORS”. In: 1.5 (1998), pp. 1825–1827.

[11] M P Zorzano, H Mais, and L Vazquez. “Numerical solution of two dimensional Fokker-Planck equations”.
In: 98 (1999), pp. 109–117.

[12] Robert Rosenbaum. “A Diffusion Approximation and Numerical Methods for Adaptive Neuron Models
with Stochastic Inputs”. In: 10.April (2016), pp. 1–20. doi: 10.3389/fncom.2016.00039.

[13] Anuschka Pauluhn. “Stochastic beam dynamics in storage rings”. PhD thesis. Hamburg U., 1993. url:
http://www-library.desy.de/cgi-bin/showprep.pl?DESY-93-198.

[14] Risken H. The Fokker-Planck Equation. Methods of solution and applications. Vol. Springer S. 2nd Edition.
Berlin, 1989.

[15] Mandli. 10 Hyperbolic-1. 2019.

[16] Mandli. 09 parabolic. 2019.

13


