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Abstract

Simple ensemble methods have achieved state-of-the-art performance in model-free Rein-
forcement Learning (RL) through stabilizing learning by training a set of diverse agents and
performing efficient exploration. This work seeks to improve aspects of training diverse agents
and of performing exploration for ensemble methods by developing two new ensemble meth-
ods for general off-policy RL methods, U-SUNRISE and R-SUNRISE. U-SUNRISE improve
the training of diverse agents within the ensemble by encouraging each agent to learn sam-
ples from clusters obtained through the unsupervised clustering of raw state observations in a
low-dimensional latent space. R-SUNRISE improves efficient action exploration through the
inclusion of online regret minimization algorithms. After testing on Atari games, we show that
these algorithms can outperform previously developed simple ensemble methods.

Introduction

While reinforcement Learning (RL) algorithms have successfully learned a variety of complex
tasks including playing Atari games [1], these algorithms remain difficult to train. Many of these
algorithms depend on training neural networks which are highly sensitive to random noise,
careful hyper-parameter settings, optimal training data distributions, and efficient exploration
of unseen state-action pairs [2], [3].

A variety of techniques and algorithms have been developed to improve the stability and
efficiency of these RL algorithms. For off-policy algorithms like Deep Q Networks (DQN)s and
Soft Actor-Critic (SAC) [4], the training data can be weighted in order to improve learning based
on prioritizing important transitions [5] and to overcome pathological data distribution problems
that arise from lack of corrective feedback in approximate dynamic programming methods (e.g.,
DQNs and Actor-Critic algorithms) [2]. For DQNs, a variety of different improvements from
Double Q-learning [6], to Dueling Networks [7], to Distributional RL [8], and Noisy Nets [9] have
led to scoring and training stability improvements for many tasks. Hessel, Modayil, Hasselt,
et al. [10] combine these improvements together to create a DQN-based algorithm, RAINBOW,
which has exceptional performance on Atari games.

A new complementary improvement, ensembles, has shown state-of-the-art learning per-
formance. Lee, Laskin, Srinivas, et al. [3] were able to show that a simple unified ensemble
scheme, SUNRISE, outperformed existing off-policy RL methods and model-based RL meth-
ods. Two key ideas behind SUNRISE were maintaining diversity among the agents within the
ensemble through bootstrapping and efficient exploration via upper confidence bound inference.
Building on this work, we introduce two methods, U-SUNRISE and R-SUNRISE, that seek to
explore new ways to maintain agent diversity and perform efficient exploration within ensembles
respectively.

1. Unsupervised Environment Clustering (U-SUNRISE): We map our high-dimensional
states to a low-dimensional latent space and perform unsupervised clustering. Then, each
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agent in the ensemble is assigned a cluster-centroid in the latent space. A state-action
pair is added to each agent’s buffer with a probability vector defined as a soft-max over
the latent space distances between the state observation to each of the cluster-centroids.
This encourages each agent in the ensemble to ”specialize” in similarly clustered state
observations and encourage the training of a diverse ensemble.

2. Regret Weighted Exploration (R-SUNRISE): We incorporate a decision-theoretic
online learning algorithm that minimizes regret, Normal Hedge [11], in order to give more
weight to the predictions of the agents in the ensemble that have accumulated lower regret
when suggesting actions.

We benchmark the performance of these ensemble algorithms against SUNRISE [3] in two
Atari Environments (limited by compute) Asteroids and Boxing. For the agents in our ensemble,
we use Rainbow DQN [10]. In our experiments, we see our modifications, R-SUNRISE and U-
SUNRISE, improve upon the performance of SUNRISE.

Methods

Regret-Weighted Exploration

In SUNRISE, Algorithm 1 listed in the appendix, exploration is conducted through an
upper confidence bound approach across the agents, which are DQNs in our application, in the
ensemble through the following function:

at = arg max
at,i∈A

Qmean(st, at,i) + λQstd(st, at,i)

where λ is a constant and:

Qmean(st, at,i) = 1/n

n∑
i=1

Qi(st, at,i)

Qstd(st, at,i) =

√√√√1/n

n∑
i=1

(Qi(st, at,i)−Qmean)2

The intuition here is that the uncertainty on each action can be quantified by the standard
deviation of the Q-values predicted by the ensemble of DQNs. Exploration is then encouraged
by providing a bonus for visiting unseen state-action pairs with high uncertainty [3].

While this approach allows for efficient search, there is no mechanism to penalize unreliable
DQNs in the ensemble. Therefore, we modify the Qstd term by weighting the standard deviation
contribution of each DQN by how many times it under-performed quantified by a custom loss
function. Our expression for choosing the next action at time t becomes:

at = arg max
at,i∈A

Qmean(st, at,i) + λQRegret
std (st, at,i)

where QRegret
std (st, at,i) is calculated by the following for a n-ensemble:

QRegret
std (s, a) =

√√√√ n∑
i=1

wi · (Qmean(s, a)−Qi(st, at,i))
2

where w ∈ ∆n−1 is determined by regret minimization function, Normal Hedge [11], through
the following procedure. Each DQN accumulates loss when an action is taken, a reward is
received, and it didn’t predict a high enough Q-value for that action. If a DQN predicted a
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low Q-value for the action relative to an arbitrary reference function of the DQNs, Qref(st, at),
in the ensemble, it incurs a loss. These losses can then be fed to into NormalHedge which
attempts to choose weights, w ∈ ∆n−1, which decrease the standard deviation contribution to
QRegret

std (st, at,i) for DQN i if it has accumulated a significant amount of regret and therefore
is unreliable. Overall, this regret-minimization exploration algorithm would be more robust to
unreliable DQNs within the ensemble. For this implementation, we select an arbitrary DQN to
a fixed DQN in the ensemble. The total algorithm, Algorithm 2, is listed in the appendix.

Unsupervised Environment Clustering

In SUNRISE, the agents are trained to be diverse through bootstrapping [12] which has
been shown to help stabilize the learning process and improve performance. The diversity
from bootstrapping comes from the initial random parameter values and the different random
training samples generated for each agent. Binary masks, mt,i are drawn from a Bernoulli
distribution with parameter β ∈ (0, 1]n at each time-step t. These masks determine if a sample
transition at time t is added to the buffer an agent i. While this is an effective way to train
agents independently, we would like to choose the binary masks in such a way that allows each
agent to further specialize in specific state-action pairs and further enforce diversity.

As inspiration, Seo, Lee, Clavera, et al. [13] recently developed a method that learns a multi-
headed dynamics model and specializes each head to similar environments through clustering.
An adaptive planning method then selects the most applicable head based on a latent context
vector dependent on past experiences.

To treat each agent as a head specialized to each environment, we first attempt to derive a
low-dimensional representation of the states and then perform unsupervised clustering, as seen
in Fig. 5 in the appendix. RL algorithms that leverage latent space state representations have
been shown to improve overall performance and sample efficiency [14]. Additionally, it can help
reduce computational complexity. In this work, we use Principal Component Analysis (PCA)
in order to map from our state observations to the low-dimensional latent space. We chose
PCA because it’s a dimensionality reduction technique whose components are easy to analyze
for correctness, Fig. 3 in appendix, which is helpful when developing a new algorithm.

For unsupervised clustering, we perform K-means. By using K-means, we are allowed to
choose k = n in order to match the number of agents in our ensemble. After clustering with
K-means, we can extract the centroid of each cluster, c1, . . . , cn, and assign each agent i in the
ensemble to a cluster-centroid ci. Given a state st, our PCA-based encoder as φ(x) : Rx → Ry, :
x ≥ y, dist representing the euclidean norm, and c1, . . . , cn ∈ Rk as the cluster centroids for n
agents in the ensemble. The Bernoulli parameter for agent i at time t is determined by:

ρt,i = β · exp(dist(φ(st), ci))
n∑

l=1

exp(dist(φ(st), cl))

By applying a soft-max to the latent space distances between st and our centroids, we’ve
observed experimentally that φt doesn’t concentrate all the probability mass on one agent. This
helps prevent training an ensemble where each agent is over-trained in only a specific region of
the latent space but left without any support for other states. Additionally, β will still control
the number of transitions included in the buffer.

In order to train the encoder and clustering algorithm, we first use a random policy to collect
training states. The total algorithm, Algorithm 3, is listed in the appendix.
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Results

Scores on Atari Games

To benchmark our modified algorithms, U-SUNRISE and R-SUNRISE, we evaluate perfor-
mance on two Atari games, Boxing and Asteroids. Each score is the average performance on
10 evaluation episodes after 100K training steps averaged over 3 random trials with set random
seeds. Additionally, we run SUNRISE and SUNRISE without UCB exploration (SUNRISE no
UCB) as baselines for performance comparison.

Game SUNRISE no UCB SUNRISE U-SUNRISE R-SUNRISE

Boxing 1.2 4.067 5.167 3.8
Asteroids 699.67 679.33 750.66 812.67

Table 1: The scores are the performance of each algorithm after 100K training steps averaged
over 3 trials. For Boxing, we see that U-SUNRISE outperforms both baselines and R-SUNRISE
outperforms SUNRISE no UCB. For Asteroids, U-SUNRISE and R-SUNRISE outperform both
baselines.

Asteroids Training Performance

Figure 1: Above are the Asteroids scores of each algorithm as a function of time. Each color
denotes a different random seed used in training. The lighter region for each run is bounded by
the max score observed and the min score observed over 10 evaluation episodes.
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Boxing

Figure 2: Above are the Boxing scores of each algorithm as a function of time. Each color
denotes a different random seed used in training. The lighter region for each run is bounded by
the max score observed and the min score observed over 10 evaluation episodes.

Discussion

Algorithm and Training Performance

For the Boxing experiments, U-SUNRISE out-performed all other methods. This, however,
could be attributed to the extremely high average evaluation performance on a single trial.
When compared to similar random seed trials, U-SUNRISE under-performed SUNRISE and
R-SUNRISE 2 out of 3 times. On Boxing, R-SUNRISE seemed to have performed similarly
to SUNRISE and out-performed SUNRISE no UCB. However, we notice that in Fig. 2, R-
SUNRISE has much more stable training which could be attributed to the regret minimization
modification to its exploration.

For Asteroids, R-SUNRISE out-performed all other methods and U-SUNRISE out-performed
both our baselines. Surprisingly, SUNRISE no UCB out-performed SUNRISE. In general, the
training performance for all algorithms, as observed in Fig. 1, was fairly similar.

Possible Drawbacks and Improvements

For U-SUNRISE, there are two possible improvements. Firstly, the clustering procedure we
use can result in imbalanced clusters leading to unequal training samples for each agent in the
ensemble. A clustering procedure that can balance each cluster more equally would solve this
problem. Secondly, the clustering procedure is dependent on observations obtained by a random
policy and therefore the clusters learned over the sampled data may not be representative of
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the true state clusters. Instead of using a random policy, we can use the state-action pairs
generated through training an agent to obtain data distribution that would better resemble
what the ensemble would actually encounter. Additionally, we can take an online approach and
update the clusters as the ensemble trains on new state-action pairs.

For R-SUNRISE, an improvement could address an underlying assumption where the relia-
bility of each algorithm is non-stationary (i.e., it doesn’t change with time). This assumption
could be flawed as the performance of the agents is constantly fluctuating through training.
Much decision-theoretic online learning (DTOL) methods do not handle situations where the
reliability of the experts changes over time. However, there are a variety of DTOL methods
that can handle non-stationary agents competitively [15], [16].

Conclusion

In this work, we were able to develop two algorithms U-SUNRISE and R-SUNRISE from
the simple unified ensemble method SUNRISE [3]. These two algorithms improved ensemble
diversity and efficient exploration respectively and are designed to be compatible with general
off-policy RL algorithms as agents in the ensemble, like SUNRISE. With Rainbow DQNs as
agents, we benchmarked U-SUNRISE and R-SUNRISE against SUNRISE on two Atari games,
Boxing and Asteroids. We found that U-SUNRISE and R-SUNRISE outperformed SUNRISE
in a variety of instances and R-SUNRISE showed better overall training stability.

Future Work

For the choice of latent space encoders, many methods leverage Variational Auto-Encoders
[17]–[19] and newer state-of-the-art approaches have sought to leverage encoders that preserve
bisimulation metrics [20]. While we used PCA as the encoding method for projecting our states
into a lower-dimensional latent space, future work should leverage state-of-the-art bisimulation-
based encoders.

As mentioned in the Possible Drawbacks section, using a DTOL algorithm that can better
handle non-stationary agent reliability could improve the performance of R-SUNRISE.

We are also hopeful that ensemble methods with diverse agents could be applied competi-
tively to tasks in Meta-Learning and Transfer Learning.
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Appendix

The original SUNRISE algorithm for the Rainbow DQN along with R-SUNRISE and U-
SUNRISE are listed here for reference.

Algorithm 1: SUNRISE: Rainbow Version

1 for each iteration do
2 for each timestep t do
3 \\UCB Exploration
4 Choose the action that maximizes at = arg max

at,i∈A
Qmean(st, at,i) + λQstd(st, at,i)

5 Collect state st+1 and reward rt from the environment by taking action at
6 Sample bootstrap masks Mt = {mt,i ∼ Bernoulli(β) | i ∈ {1, ..., N}}
7 Store transitions τt = (st, at, st+1, rt) and masks in replay buffer B ← B(τt,Mt)

8 \\Update Q-Functions via Bootstrap and Weighted Bellman Backup
9 for each gradient step do

10 Sample random minibatch {(τj ,Mj)}Bj=1 ∼ B
11 for each agent i do

12 Update the Q-function by minimizing 1
B

∑B
j=1mj,iLDQN

WQ (τj , θi)

Algorithm 2: R-SUNRISE: Regret-Weighted Exploration

1 Initialize NormalHedge
2 for each iteration do
3 for each timestep t do
4 \\UCB Exploration

5 Choose the action that maximizes at = arg max
at,i∈A

Qmean(st, at,i) + λQRegret
std (st, at,i)

6 Collect state st+1 and reward rt from the environment by taking action at
7 Sample bootstrap masks Mt = {mt,i ∼ Bernoulli(β) | i ∈ {1, ..., N}}
8 Store transitions τt = (st, at, st+1, rt) and masks in replay buffer B ← B(τt,Mt)
9 if rt > 0 then

10 Qi accumulates loss following LRegret
i = 1(Qi(st, at) < Qref(st, at))

11 Update regret minimization algorithm, NormalHedge, with loss vector
LRegret

12 \\Update Q-Functions via Bootstrap and Weighted Bellman Backup
13 for each gradient step do
14 Sample random minibatch {(τj ,Mj)}Bj=1 ∼ B
15 for each agent i do

16 Update the Q-function by minimizing 1
B

∑B
j=1mj,iLDQN

WQ (τj , θi)
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Algorithm 3: SUNRISE: Unsupervised Environment Clustering

1 for each iteration do
2 \\Pre-Sampling
3 Randomly choose an action at and store the state st in a buffer, Bpre-sample

4 \\Projecting
5 Apply Principal Component Analysis (PCA) to the buffer Bpre-sample to learn the top

100 principal components for mapping to a latent space.
6 \\Clustering
7 Apply K-means to choose K clusters in our latent space and derive the K centroids (K

should match the number of ensembles).
8 for each iteration do
9 for each timestep t do

10 \\UCB Exploration
11 Choose the action that maximizes at = arg max

at,i∈A
Qmean(st, at,i) + λQstd(st, at,i)

12 Collect state st+1 and reward rt from the environment by taking action at
13 Sample bootstrap masks Mt = {mt,i ∼ Bernoulli(ρt,i) | i ∈ {1, ..., N}}
14 Store transitions τt = (st, at, st+1, rt) and masks in replay buffer B ← B(τt,Mt)

15 \\Update Q-Functions via Bootstrap and Weighted Bellman Backup
16 for each gradient step do
17 Sample random minibatch {(τj ,Mj)}Bj=1 ∼ B
18 for each agent i do

19 Update the Q-function by minimizing 1
B

∑B
j=1mj,iLDQN

WQ (τj , θi)

Figure 3: Illustration of three of the orthogonal components from the PCA method on the
Boxing game. These components are easily interpretable as the game window as well as the
position of the players can be inferred.
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Figure 4: The actual image vs the reconstructed PCA image from the Boxing game. We can
see that the method can somewhat recover the original game image.

Figure 5: T-SNE visualization of how the clusters of states determined by the PCA+K-means
technique look in a 2D space.

The code will be in the following repository: https://github.com/magittan/sunrise
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